PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999

Finite-size effects in a population of interacting oscillators

Arkady Pikovsky and Stefano Ruffo
Department of Physics, University of Potsdam, Am Neuen Palais, PF 601553, D-14415 Potsdam, Germany
2Dipartamento di Energetica “S. Stecco,” Universith Firenze
and Istituto Nazionale di Fisica Nucleare, Via S. Marta 3, 1-50139 Firenze, Italy
(Received 11 September 1998

We consider a large population of globally coupled noisy phase oscillators. In the thermodynamic limit
N— oo this system exhibits a nonequilibrium phase transition, at which a macroscopic mean field appears. It is
shown that for large but finite system siXeghe system can be described by the noisy Stuart-Landau equation,
yielding scaling behavior of statistical characteristics of the macroscopic mean fieltlwitie predictions of
the theory are checked numericall$1063-651X99)03802-7

PACS numbe(s): 05.45.Xt, 05.40.Ca, 05.70Fh

Many nonequilibrium systems can be represented as en- 1 N
sembles of interacting self-sustained oscillators. Such models M=X+iY= N E g'fn
are very popular in biophysid4,2], but can also be applied 1
to the description of Josephson junctidB$ laser array$4],
charge density wavef5], chemical reactiong6], etc. In
these situations the interaction can be often considered as de
distance independent, thus leading naturally to a model with — = g(=Xsinb,+Y cosh,) + &(t). 2
global, or mean-field, coupling. Two types of systems are dt
usually considered: In one case all oscillators are determin- _ ) N
istic, but have different natural frequencies; in the other case !t is well known that if the coupling: exceeds a critical
the oscillators are identical, but are driven with uncorrelatec@lue, a nontrivial state with a finite macroscopic mean field
noisy forces. The framework of the statistical treatment of¥l appearg7]. This transition can be described analytically
such models, as well the models themselves, has been prét the thermodynamic limitN—cc. Our aim here is to dis-
posed by Kuramot$7]. The main effect is the transition to cussfinite-size effectshat appear for large but finite en-
mutual synchronization as the coupling strength exceeds $€mble sizedN. We start with writing the equations for the
threshold value. Different aspects of this nonequilibriumguantities
phase transition have been studied8r-11].

In this paper we focus on finite-size properties of the tran-
sition to mutual synchronization in a population of noisy
globally coupled oscillators. We study the statistics of fluc-

tuations that appear for finite ensemble sidesA similar  Note that the mean field iM=C,. Calculating the time

question regarding an ensemble of deterministic oscillatorgerivative, we get a system of ordinary differential equations
with distributed natural frequency has been addressed by

Daido [9]. Our approach differs from that ¢B], as we as- dc, ik N _ ek
sume the gauge invariance of the probléimere is no pre- TGN > £,e0n+ ?(Clck,l—c,lckﬂ). 3
ferred value of the phase of the oscillatipnshile the solu- 1
tion given in[9] breaks this invariance.

We consider a phase model of identical globally couple
noisy oscillators[7,12,13. Each oscillator is described by
the phase,, whose dynamics is given by the equation

and to rewrite Eq(1) as the mean-field governed dynamics

N

Ck:_ ikﬁn.
N i=1

dn these equations only the first term on the right-hand side
contains the noise. We estimate this term when the mean
field M is small, i.e., in the disordered state, or near the

transition point. In this case the effect of the coupling on the

dynamics of the phasg, is small compared to the effect of

de, 1 _ the noise, so we can consider the phageas uncorrelated
dt _°N ;1 SIN(6) = Bn) + &n(0). (D) and the contributions to the term
ik o
Heree>0 is the coupling constanh is the number of os- — > g.elken
cillators in the population, ang,(t) is Gaussiars-correlated N T
driving noise

as independent. Thus we can apply the law of large numbers

dwri
(£,1)=0, (&n(1)Em(t))=2DS(t—1")Snp. and write

ik .
: . . , — ko~ A+
It is convenient to introduce the complex mean fitdas N E éne Tk
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whereA is the deterministic part angl is a deviation having the deterministic part of the dynamics of the mean field is

the variance proportional td . To calculateA, we can use extremely slow, thus the correlation of the noisy term decays

the Furutsu-Novikov formul@l4,15 to get fast on the appropriate time scale. So rewriting &f).as a
system of two real equations, we obtain

) eikﬁn .
<§ne'””>=D< 8¢ >:D”‘e'k0"' (e £?
n — | _ o 2 2
X (2 D)x Top CHYAXH mu(0), 8
Finally, we obtain the system
2
- € &
dC, ek Y=(——D)Y— ——(X2+Y2)Y+ 5(1), 9
Gt = KPCt 5 (CiC1=CoiCis) + . (4) 2 160 ’
. . ) _with
For convenience, we write down the equations for the first
three modes: (m={(my)=0,
. & ! — / — !
Clz_Dcl_E(Cch_cl)"’ﬂl(t)a (mx(D) (1)) =7y (1) (")) =2d 5(t—1t"),
(1) my(t"))=0.
- e
C2=—4DC2—§(C30’£—C§)+ 72(1), (5  The noise intensity scales as<N~!, so we can writed

=oN~1, wheree=0(1).
) e Different statistical characteristics can be determined for
C3=—-9DC3— E(C4C’l* —C41Cy) + n5(t). the model(8) and(9). Writing out the Fokker-Planck equa-
tion (see, e.g.[16]) for the systen(8) and(9) in the form

In the thermodynamic limitN—co the noisy termsz, WX, Y1) 9
vanish and we get a deterministic system. In this limit the = =
transition is a Hopf bifurcatioriwith zero frequency of os-

aV(X,Y)W P
aX MY

IV(X,Y) W}

at T X Y

cillations) in the system(5) and the normal form equation PW PPW
describing this bifurcation(also called the Stuart-Landau —_— ],
equation can be obtained using the expansion in the small X%  gY?

parametee/2—D <1 [7]. Here we follow this approach tak- . _

ing into account noisy terms as well. One can see from EqdVith the potential function

(5) that the mode€£, with largek decay fast, while the first e D &2
modeC, becomes unstable at the critical coupling=2D V(X,Y)=—|=— =| (X34 Y2+ — (X2+Y?)2,
and its dynamics is slow. Thus, near the bifurcation point, we 4 2 64D

can express the higher modes algebraically through the first ) , i

mode C, . It is sufficient to assume thd€,|~0 for k>2  One easily gets the stationary solution

and from the conditior€,~0 (the second mode decays fast V(X,Y) NV(X,Y)
on the time scale of the instabilityve get the relation be- Wo(X,Y)=c eXD( - )ICGXF( - —)

o d
tweenC, and C,:C,~(£/8D)C2+(1/4D)7,. Substituting 7 10
this into the equation fo€,, we get the standard form of the
Hopf-Andronov bifurcation It is convenient to describe statistical properties of the

complex mean fieldM using its representation through the
phase® and the amplitud&®: M =Re®. The stationary dis-
tribution (10) is phase independent and after simple calcula-

) ) ) ) o tions we get a scaling law for the average amplitude of the
This equation describes the bifurcation in the presence okean field

both multiplicative and additive noise. As the noise intensity
is small for largeN, near the bifurcation point the multipli- (R)=N"Y4F(aN?), (11
cative noise does not lead to additional instability and thus
can be neglected when compared to the additive noise. As\aherea=¢— & is the bifurcation parameter. We check this
result, we get relation numerically in Fig. 1. One can see that the scaling
relation(11) is valid in a wide range of the coupling constant
E.
We now discuss the correlations of the mean field. As Eq.
(7) describes the noisy Hopf-Andronov bifurcation, one can
In this equation the precise statistical properties of thedirectly apply here the results of the theory of noisy self-
noise termy; are unknown. We can only hypothesize, usingsustained oscillationgl7]. To the best of our knowledge, a
the law of large numbers, that it is Gaussi@rcorrelated clear picture exists only for states far beyond the Hopf-
with an amplitude proportional thl~ 2. We can justify this  Andronov bifurcation point. The reason is that only far be-
by the following argument: Near the transition poite.  yond the transition point can one separate the dynamics of

Clz

2
€ € 2 & -
E—D)Cl—ﬁmﬂ Ci—gpmCitm. (6

2
&€
_ 2
M= g5 IMIPM + 7,. (7)

M=|%-D
|5~
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FIG. 1. Average amplitude of the mean fieRlin the original g 0.4
(bottom paneland scaledtop panel representations fdp =1 and g—
various population sizes: crestd=100; filled squaresN=200; < 4o
open squaredN=>500; open circlesN=1000; and filled circles,
N=2000. 0.0 ‘ . . ‘
0.0 100.0 200.0 300.0 400.0 500.0
. (b) time
the phase from that of the amplitude. Indeed, for lasgihe
probability distribution of the amplitudé10) FIG. 2. Time evolution of the mean field fer=2.5,D=1, and
N=500. (a) The “phase portrait” on theX-Y plane: After initial
N/ « 5 g2 4 transients the trajectory fills a ring of width proportionalNo 2.
Wo(R)*Rex P ZR ) R (b) The time dependence of the phase and the amplitude.

has a sharp maximum &®,,,,~4\Dae 1. The phase of
this state is well definedbecause the amplitude does not
vanish and its distribution is uniform. On the plane ,
Re(M)-Im(M) the trajectory of the mean fieldl (t) fills a )

narrow(width proportioan! taN~*?) circle aroundR,,4 (see 107 2 ]
Fig. 2). Fluctuations of the amplitude are small and fast,

while the phase exhibits a slow random-walk motion; see %
Fig. 2. As it has been shown ji7], both the variance of the
amplitude and the diffusion constant of the phase are propor_
tional to the intensity of the noise, i.e., in our caseNo®. >
We confirm these scalings with numerical simulations in Fig. 10 | .
3. —

O

In conclusion, we have demonstrated that finite-size ef-
fects near the transition point in the population of globally
coupled oscillators can be described using the noisy norma .
form equation. The effective noise in this equation scales 100 N 1000
with the system size @8~ 1. In the vicinity of the bifurcation
the fluctuations of the macroscopic mean field obey the scal- FIG. 3. Dependence of the variance of the amplitidg
ing relation(11). Beyond the transition, one can separate thgsquares (the slope of the fit is—1.04) and the phase diffusion
fluctuations of the amplitude and the phase; both scale asonstantD,, (circles (the slope of the fit is-0.99) on the popula-
N~1. The scaling predictions can be directly applied to thetion sizeN for D=1 ands=2.5.
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interpretation of possible experiments with physi¢&l, invariant; in this work it is assumed thdM)#0 and this
chemical, or biologica[1,2] systems. For example, in laser quantity is taken as an order parameter, while from the phase
arrays[4], the gain in the radiation quality depends on thediffusion picture(Fig. 2 it follows (M)=0. It is suggestive
number of coupled lasers. On the other hand, in some cases@investigate the relation between the two problems in more
Comparison of the fluctuations of individual oscillators with detail. Also the guestion of finite-size effects in populations

those of the mean field could allow one to estimate the efof pscillators with both noise and distribution of natural fre-
fective number of interacting subsystems. quencies remains unsolved.

The finite-size scaling above differs from the analogous
results for the population of deterministic phase oscillators ]
[9], where the effective fluctuations are different on the two  We thank P. Grassberger, A. Lichtenberg, M. Rosenblum,
sides of the transition. One possible reason for this discrep?- Politi, and S. Lepri for valuable discussions. A. P. ac-
ancy is that in the deterministic case one can clearly separat@owledges support from the Max Planck Society. The work
all oscillators into entrained and nonentrained, with differenthas been supported by the German-italian VIGONI Program,
contributions to fluctuations. Another difference is in thethe ISI FoundatioriTorino), and the EU Human Capital Mo-
very definition of the order parameter: [€] it is not gauge bility Network under Grant No. ERB-CHRX-CT940546.
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